
embSFI: An Approach for Software Fault Isolation
in Embedded Systems*

Andreas Ruhland
fortiss GmbH

Munich, Germany
andreas.ruhland@tum.de

Christian Prehofer
fortiss GmbH

Munich, Germany
prehofer@fortiss.com

Oliver Horst
fortiss GmbH

Munich, Germany
horst@fortiss.com

Abstract—Software Fault Isolation (SFI) is a technique to sand-
box software components based on transformation and checks
on the assembly code level. In this way, software components
can only access memory within specific fault domains. This
paper presents embSFI, which applies selected SFI techniques
to embedded systems in order to increase dependability and
security, complementing or replacing a memory management
unit. Our approach is designed to use SFI techniques which can
be validated efficiently, even on embedded devices. Furthermore,
we show that the overhead in performance is low, however
depending on the scenario.

I. INTRODUCTION

Software Fault Isolation (SFI) modifies code at the assem-
bler level with instructions to guarantee that the code does
not violate the restrictions required by the system. This can,
for example, be instructions that ensure the target address of
a memory instruction is valid. This concept was introduced
more than 20 years ago by Wahbe et al. [1]. This approach
does not target embedded ARM systems but some general
concepts were used within embSFI. Another recent approach,
NaCl [2], targets ARM hardware but requires virtual memory
addresses and is not built for small embedded systems without
full posix support. Concepts from both approaches are used
to build embSFI which provides a fast online validation on
embedded systems and a LLVM [3] compiler extension to
generate suitable code. The concrete SFI patterns that make
fast validation and execution on embedded systems possible
were newly designed for embSFI. A more detailed description
of this work can be found in [4]. In this paper software
component and app are used interchangeably.

For secure and dependable critical systems it is important
to keep the fault domains as small as possible. This means
that should an error occur in one software component, other
software components are unaffected. Small fault domains are
one of the main motivations for microkernels, which are
still extensively researched for critical systems [5]. There are
various methods of creating fault domains, such as utilizing
a memory management unit (MMU), virtualization or the
aforementioned SFI.

* This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 645119

EmbSFI uses SFI to enforce fault domains, and so we
highlight the general advantages of using SFI for dependable
critical embedded real-time systems in the following sections.

If a MMU or a memory protection unit (MPU) is not present
within the embedded system, SFI can substitute their function-
ality. Should a MMU be available, SFI can still provide finer
granularity on memory accesses. For example, with SFI it is
possible to allow a software component to directly access only
one byte in a memory area in a hardware memory mapped
area. This can be necessary if the access to different hardware
should be controlled to only grant access to specific software
components. This could also be implemented by using a MMU
and different execution levels and issuing a system call for
access, but this approach would take control from the software
developer. In addition, system calls can make the time analysis
of software more difficult and make the system as a whole
more complex. Because of that, SFI was used to decrease the
context switch time for hardware drivers in microkernels [1].

When enforcing SFI, it is important to validate that every
instruction in the binary is checked, and that the system only
accepts binaries that fulfill the SFI invariants. This means that
it is not possible to hide instructions, as can be done with
self-modifying code. This is an important security feature as
hardware cannot always be trusted and be susceptible to faults
as shown with the rowhammering attack [6]. Within this attack,
an instruction normally available in the user level of execution
was used to change the expected behavior of the hardware.
Through the use of SFI, such instructions can be disallowed.
This is one reason why SFI is used inside the Chrome Browser
to execute untrusted code [7].

The rest of the paper is organized as follows: Section II will
describe the assembler properties of the embSFI system. The
implementation of embSFI, including the compiler extension
that generates code according to these properties, and the
validator, which validates that the assembler code fulfills these
properties, are discussed in Section III. An evaluation of the
implementation with regards to its general limits and bench-
mark performance of the modified compiler are presented in
Section IV.

II. ASSEMBLER PROPERTIES OF EMBSFI

In this section, we describe the properties of the validatable
assembler. embSFI combines concepts from [2] and [1] and

adopts them to the ARMv7 architecture. These concepts are
additionally made compatible for embedded systems without
utilizing a MMU. A software component referred to as app,
a consists of a code area and a data area. The code area of
the app must be of a fixed size, Ca, that must be a power
of two. The data area includes a variety of data such as heap
and stack, and similarly must have a fixed predefined size Da

which is also a power of two. The execution environment for
the app, similar to an operating system, can provide special
functions that are callable from within the app. It is possible
to allow the app to directly access specific memory areas
outside of the private memory of the app. The concrete set of
assembler properties were selected to be quickly validatable
and allow for code that adheres to these properties to be easily
generated. The following example code shows valid assembler
code compared to code generated by an unmodified compiler:

Listing 1: without SFI

0
1 push{ r 4 , s l , f p , l r }
2 add f p , s p , #8
3 movw r 0 , #0
4 movt r 0 , #0
5
6
7 bl 0 <p r i n t >
8 . . .

Listing 2: with SFI

b f i s p , r 9 , # 2 4 , #8
push{ r 4 , s l , f p , l r }
add f p , s p , #8
movw r 0 , #0
movt r 0 , #0
nop {0}
nop {0}
bl 0 <p r i n t >
. . .

The different additional instructions in Listing 2 enforce the
properties, no matter what the machine state is when entering
this code.

We first describe the general properties of the modified code,
and follow these with concrete patterns that are accepted by
the embSFI validator.

A. embSFI approach

The main goal is to prevent the code of an app to jump
somewhere out of its own code or to access memory outside of
its own private memory area. However, there exist properties
not directly connected to these goals, which are still necessary
to be validatable.

1) Bundling: Bundling is a concept utilized by [2], that
ensures every target of an indirect or direct instruction jump
must be the start of a bundle. A bundle consists of multiple
consecutive instructions with every instruction belonging to
exactly one bundle. The binary size of the bundle B must be
a power of two B = 2n for n ∈ N. The bundle size is given
by the environment and is the same for all apps. It can be
assumed that the first instruction is located at the beginning
of a bundle and all other instructions are consecutive and kept
in the same order. Possible jump targets are normally function
entries or branches of the app or selected function entries of the
operation system. Assuming that hexadecimal addresses are
used that address bytes, that a single instruction is 4 byte long
as in the A32 Armv7 instruction set and that 4 consecutive
instructions should always form a bundle, the resulting bundle
size would be 16 bytes. This was the bundle size of Googles
NaCl described in [2]. This means the start address of each

code bundle should end with 0x0. For example, 0xaaa0 and
0xfff0 are possible jump targets but 0xbbb1 is not.

Therefore, in Listing 2 it is not possible to jump directly to
the push in line 1 and skip the sandboxing instruction in line
0.

2) Restricted Instruction Set: For embSFI only ARMv7
A32 instructions were considered which means no thumb
instructions are currently possible like in [2]. Multiple instruc-
tions are forbidden completely, for example, store memory
operations, which use a register as base address and as an
index. All instructions that lead to undefined behavior or a
fault are also not allowed.

3) Position independent code: The code of the app cannot
assume that it will be located at a specific address during
execution. This is also assumed by other binary loading
concepts on embedded systems [8]. Therefore, the code must
be position independent, which means that the code must
either use program counter dependent addresses or use linker
symbols instead of hard coded addresses.

4) Memory read and write: As realized in [1] the memory
address where any instruction reads from or writes to must
be inside the fixed size private data area of the app or
an explicitly allowed memory address. The allowed memory
access addresses do not change during the execution. The code
segment of the app is not readable or writeable. This is a
difference to [7] where read access to the code segment is
allowed. In the SFI method proposed by embSFI the stack and
the predefined app data are both in the same consecutive fixed
size private data area. The size of the private data segment
must be a power of two which means Da = 2n for n ∈ N.
Also the start address of the data memory Sa area must be a
multiple of Da which means Sa = Da ∗ n for n ∈ N

5) Guard zones: As proposed in [1] guard zones are used
to make certain accesses possible. For example in Listing
2 the push instruction manipulates 16 bytes and the base
address is only guaranteed to be anywhere inside the private
memory area of the app. This means that a small amount of
memory around the data memory area must be reserved for
the app. For example if the data memory areas goes form
0xaaaaaa00 to 0xaaaaaaff and the guard zone G is 40
bytes big the address ranges 0xaaaaa9d8 to 0xaaaaaa00
and from 0xaaaaaaff to 0xaaaaab27 have to be reserved
exclusively. In difference to [1] no error is generated if the
guard zones are accessed. They can contain for example parts
of the stack.

6) Dedicated registers: Like proposed in [1] for MIPS
dedicated registers can also be used in the ARM Architecture.
In the register r9 the start address of the data segment is stored.
It is shifted log2(Da) bits to the right. This is only for an
efficient implementation and is not used in [7] because the
NaCl implementation relies on the memory management unit
for separating code from data and it is not used in [1] because
it is an optimization specific for certain ARM instructions
as shown in the following sections. For example if the data
segment starts at 0xdeadbe00 and is 256 bytes big the
content of r9 is 0x00deadbe. The code can always assume

that r9 which is set by the environment contains the shifted
address of the current data segment. Also the code is not
allowed to use any instruction that could possibly change r9.
As code and data memory areas are separated, the dedicated
register r8 is used for the code and must always contain a
valid jump address for the app. This means bundling must
be respected and the size of the code segment. The app can
assume that r8 always contains a valid jump address because
it is set by the environment and enforced with the validation.
The app can change r8 only if it is guaranteed that after the
modification r8 again contains a valid jump address. This can
be tricky and one way to do it is shown in Section II-B2.

B. Valid Patterns

To keep the validator very simple and small so it can be
executed on an embedded system the patterns that are accepted
are very simple. One simplification is to always look only at
a bundle at a time. The validator will not accept code that
applies to the principles but uses different patterns.

1) Memory access instructions: In this section possible
valid A32 instruction sequences for memory accesses that can
easily be validated are discussed. All instructions sequences
are always in the same bundle. The most straightforward
approach would be the direct access of data at a fixed address
in the data memory area of the app. The address could be set
by the linker.

mov r 1 , # d a t a a d d r e s s
l d r r 2 , [r1]
s t r r 3 , [r1]

If the linker replaces dataaddress with a valid constant
address in the data segment of the app the validation of this
code would be successful. The validator accepts several of
move, load and store combinations.

If the memory access is the result of a complex calculation,
the validation cannot track the value of the variable for exam-
ple because the calculation is spread in multiple bundles. In
this case, the register used for the access must be sandboxed as
done by multiple other approaches [2] [1]. However, embSFI
does a special optimized sandboxing for ARM using dedicated
registers. We assume that the Da = 24 = 16 and look at the
following instruction sequence:

b f i r 1 , r 9 , # 4 , #28
l d r r 3 , [r1]

Because of the properties we can assume that r9 contains
the address of the start of the data memory area Sa shifted
log2(Da) = 4 bits to the right. Now the bfi instruction copies
the bits 1 to 28 of r9 to the bits 4 to 32 of the register r1. In
the instruction 4 is the start target bit and 28 is the number of
bits copied [9, p. 2616]. Now we can assume r1 to be in the
data range. As ldr loads 4 bytes the access is valid if the
guard zone G ≥ 4.

As ARM allows also constant offset the maximal constant
depends on the guard zone size G. For example instead of
[r1] using [r1,#10] requires G ≥ 14.

The sandbox approach as described above has the disadvan-
tage that a faulty app instead of immediately shutting down
keeps on running using wrong values. An alternative approach
which is also described in [1] is based on comparing the
variable and jumping to an error handling routing if the address
is out of range.

2) Branch instructions: In this section possible instruction
sequences for branches that can easily be validated are dis-
cussed. It can again be assumed that all instructions are in
the same bundle. During the validation, the absolute address
of every single instruction is already known. So the A32
branch instruction b which uses a constant offset to the current
program counter can easily be validated by calculating the
constant target of the branch and checking if it is inside the
apps code memory area and if it targets the beginning of a
bundle.

For indirect jumps where the target address is normally
stored in a register also valid instrumentations exist. We
assume B = 24 = 16 and Ca = 28 = 256

bfc r 1 , # 0 , #4
b f i r 8 , r 1 , # 0 , #8
bx r8

The first instruction is a bit field clear which sets the bits 0 to
3 to zero [9, p. 2614]. Now the register r1 is bundle aligned.
After that, the last 8 bits of the bundle aligned r1 are copied to
the last 8 bits of the dedicated r8 register. This is valid because
we can assume that r8 already contains a valid jump target and
as the code segments starts 256 byte aligned and is 256 bytes
big for all possible values of r1 r8 is still a valid jump target
after the bfi instruction. This makes the bfi instruction
valid. The instruction bx r8, which jumps to the address in
r8, is always valid because r8 always contains a valid jump
target as required by the dedicated register invariant.

For function calls normally the A32 instruction bl is used
which pushes the address of the next instruction onto the stack
and then jumps into the function [9, p. 2627]. This makes it
easy to return to the callee. But also the return must follow
the invariants which means that the target address to return to
must be the start of an aligned bundle. This can be realized
by filling up the bundle with operations that do nothing like
nop. Assuming one bundle contains 4 instructions this would
lead to:

nop
nop
nop
bl # f u n c t i o n

This moving of the link instructions down at the bottom of a
bundle was also used by Google and is already implemented
in LLVM [2]. With these instrumentations a validator can
easily check if the invariants are fulfilled by the code by only
looking at one bundle at a time. Also by using always the
same instrumentation, the validator gets simpler.

C app Clang
LLVM IR

optimizations
LLVM

backend

embSFI
extension

ELF dis-
tribution

LoadingembSFI
validator

execute

embedded system

C IR IR binary

machine instructionsmachine instructions

binary

linkedsafe

Fig. 1: Overview over the stages of instrumentation and validation

III. IMPLEMENTATION

The implementation of embSFI consists of different compo-
nents like seen in Figure 1. In this section, the implementation
of the different components will be described.

A. ELF loading

As binary format the ELF format was chosen because
it is already used by other embedded systems [8], it is
well documented for ARM [10] and supported by common
compilers like llvm [3] and gcc. As embedded systems
often have only a small amount of memory available other
approaches exist which use smaller file formats that reduce
the overhead of the ELF format [11]. Because of simplicity
reasons embSFI uses the plain ELF format. The app must be a
relocatable and not an executable. This is required so that the
app can be linked easily to a specific hardware address during
loading and does not depend on virtual memory addressing.
Shareable ELF files would be harder to validate than already
statically linked relocatables. To keep the code small and
simple only the relocations R_ARM_ABS32, R_ARM_CALL,
R_ARM_MOVW_ABS_NC and R_ARM_MOVT_ABS were im-
plemented. There are over 100 different relocation types
defined for the ELF format [10]. Some of them are not relevant
for the SFI proposed here because they are used only in T32
ISA, which is not allowed so for the code generation these
relocations were sufficient. The loader and linker included in
embSFI requires the possibility to allocate aligned memory
otherwise the allocation is very inefficient and takes up to
double of the required memory like described in Section
IV-A2.

B. Validation

The validator is implemented in C and so can be integrated
into different execution environments or operating systems,
which are often also written in C in the embedded environ-
ment. The validator expects the already linked code section
and the data sections. The validator works directly on the
binary machine code to optimize its memory footprint. The
running time is O(numberof instructions). In the evaluated
examples described in Section IV the validation time was
always below one second.

C. Compiler

As in [2] Clang was used for embSFI which already
supports bundling. Other benefits of using clang are the
decoupling of frontend language and output machine code. So
the embSIF extension for LLVM can be also used with other
languages that are not C. The embSFI extension for LLVM
requires a parameter to specify the size of the required data
area, which is fixed as explained in Section II

IV. EVALUATION

The advantages of preferring SFI over MMU were already
discussed in the Section I. These general advantages also apply
to embSFI. In this section the general limits and drawbacks
of embSFI will be discussed, followed by an evaluation of the
performance of embSFI.

A. Limits and Drawbacks

1) No dynamic memory allocation: The embSFI principles
require a fixed data size which does not change during the ex-
ecution which means that the used memory cannot grow. Also
all the required memory is reserved during the execution of
the app. This is not a problem in for example high confidential
real-time systems because there it should be guaranteed that
the app is able to be executed and does not stop working in
the middle of the execution because of a lack of available
memory.

2) Allocated size: The size of the used memory can be
the double of the original app because the code and the data
memory areas should both have a size which is a power of
two. So for example if an app uses 257 bytes of data the OS
has to allocate Da = 512 bytes. Therefore, the double size
is the worst case scenario. Additionally the guard zones must
also be allocated around the data area.

3) Aligned memory: The memory for the app must be
allocated aligned. If no aligned memory allocation is available
on the OS it could be required to allocate double of the needed
Da bytes of memory and then set the latest log2(Da) bits of
the aligned block to zero to get a valid Sa. This holds also
for the memory used for the code.

4) Bigger code size: To ensure the invariants sometimes
new instructions have to be added compared to the execution
without SFI. The worst case size of the code can be multiplied
with the instructions per bundle. So if every bundle consists
of 4 instruction the code can be 4 times larger for SFI than
without SFI.

5) No self-modifying code: As the code and the data
segment are clearly separated it is not possible to use self-
modifying code. This should not be needed in the most
systems with high confidentiality because it makes code often
more vulnerable to exploits. This restriction can also found in
other SFI approaches like [2] and [1].

6) No function pointers to the OS: This is theoretically
possible but not practical because it would make instrumenta-
tion much harder. The r8 register as described above can easily
be used in the range of the own code of the app but not outside.
One possibility of solving this is the use of trampolines like
done in [2].

7) No usage of compiled code: It would be possible
to transform already compiled code that does not fulfil all
principles into instrumented SFI code. This can be done for
example with binary rewriting tools like [12]. However, as
the embSFI principles make assumptions about the dedicated
registers r8 and r9 such a rewriting would be hard to implement
or the resulting code would be very slow. So in general no
compiled code without the source can be used.

8) No return exit: This means that when the app is finished
it cannot do a normal return because this return would jump
eventually into the OS where it is not allowed to jump. Either
an OS function which is allowed for the app and terminates
the app must be called or an endless loop must be inserted at
the end of the app as last instruction.

9) Error detection: The current patterns guard memory
access, which means that a memory access for an invalid
address is changed to a valid memory access but an error is
not detected. This was done because of performance reasons.
It would also be possible to detect the error and handle an
error routine provided by the OS. This would increase the
instructions to add and so decrease the performance in regards
to memory size and run-time.

B. Performance

As in ARMor [13] to evaluate the performance MiBench
[14] was selected which is well suited for embedded system
because it does not rely on OS functions like file handling
and is implemented in C. The benchmark was executed on
an ARM Cortex A-53 processor [15]. As compiler Clang
with the modified LLVM [16] in the version 3.7 was used
including the embSFI extension. The results were compared
to binaries emitted by an unmodified Clang/LLVM 3.7. The
source code to reproduce the benchmark results is available at
http://embsfi.de.

1) qsort: The qsort small example from MiBench [14]
was chosen to be evaluated because it heavily accesses the
main memory. The test case uses 5000 strings and the qsort
from the standard c library. The tested app consists of all

parts necessary for the benchmark, which means that the qsort
and all other used library functions are part of the app. The
implementation from newlib [17] was used for that. The binary
size overhead for all different optimization levels was around
90%. The overhead in the execution time is very different for
the different optimization levels. Without optimization O0 the
overhead of the SFI variant is 143% for the time optimized
variant O3 the overhead is 82% and for space optimized Os
variant the overhead is 39%.

2) bitcount: The bitcount large example from MiBench
[14] was selected because it is not as memory bound as qsort.

The bitcount test uses different algorithms for calculating
the number of bits in an integer. As bit counting is very
fast every algorithm which is represented in an own function
is called in a loop multiple times. This means some SFI
overhead for calling a function and for returning from a
function. Also some of the bit counting algorithms rely on
lookup tables in the main memory which means memory
access which has an overhead in SFI. The highest percentage
of binary size overhead has the not optimized variant with
81%. Nevertheless, the differences between the variants are
not very high as the speed optimized variant O3 has 76% and
the size optimized variant Os has 77%. One reason for the
high overhead are the high number of small functions, which
all need a safe return. Still the number of instrumented data
accesses is in every optimization level more than twice as often
used as the instrumented jump to a register.

The time is not as probably expected because in the case
of the optimized binary size Os the SFI variant is nearly 9%
faster than the non SFI variant. This could be because of a
better cache behavior resulting from inserted nops. Still the
both fastest variants are the O3 variants without SFI and with
SFI which has a run time overhead of 35%.

V. RELATED WORK

Small fault domains in general can be achieved by sandbox-
ing [18]. Sandboxing means that the untrusted application can
only access restricted parts of the whole system to increase
the safety and security of the system. It can be implemented
in different ways for example with virtual machines (VM)
or Software Fault Isolation (SFI). Process VMs can be im-
plemented very efficiently also for small embedded systems
which was demonstrated with Maté [19]. Another possibility
which would not introduce any run-time overhead is proof-
carrying code (PCC) [20]. This means that beside the code
an encoded proof is delivered to the run time environment,
which can check if that proof holds and if it fulfils specific
requirements. Compared to PCC and VMs the approach of
SFI which was introduced 1993 by Wahbe et al. [1] is simpler.
The specific solution targets for example MIPS hardware but
not ARM. Still some general concepts were used from that
approach.

One more modern approach used by Google for their
Native Client [7] to execute non trusted binaries is also based
on SFI [2]. The overhead is as low as 5% for the ARM
architecture. However, the system requires virtual memory and

so the usage of a MMU. In addition, it does not target small
embedded systems. There are also small SFI systems like
ARMor [13] which are fully verified and optimized for the
use in an embedded system. ARMor guarantees for example
that all memory accesses are in a certain predefined area
and that the program counter only goes to instructions in
the predetermined control flow graph (CFG). ARMor uses the
link-time rewriting framework DIABLO [12] for changing the
binary and afterwards the higher order logic framework HOL
[21] for verifying this. The verifying process is more complex
than a simple online validation like in embSFI. Therefore, the
verifying is done on separate machine and can take several
hours.

Control Flow Integrity (CFG) can be enforced using meth-
ods similar to SFI and can be extended to full SFI solutions
like shown by Abad et al. [22]. The system XFI [23] shows an
approach for x86 systems. BGI [24] shows that such isolation
can also happen at a byte granularity for x86.

VI. CONCLUSION

As demonstrated by embSFI, reducing the fault domains
with SFI is achievable in embedded systems, including fast
online validation. This also increases the security of systems
because different separated software components cannot read
private memory of other components. Even when a MMU
is available, there are multiple reasons to prefer embSFI if
a small run-time and memory size overhead is acceptable.
In addition, embSFI is easy extensible. For example, if a
software component should only be allowed access one bit
directly in a hardware mapped memory this is achievable
with SFI and not with an average MMU. The performance
analysis of such an adoption for embedded ARM is left to
future research. To create a secure system, the embedded
validator must be implemented correctly. To guarantee that
it would be necessary to proof the validator for example
using HOL [21]. If this is achievable with acceptable effort
needs still to be researched. The adoption and performance
of embSFI to ARMv7 thumb and ARMv8 A64 instructions
needs to be evaluated in the future. However, without these
extensions embSFI can increase the dependability and security
in embedded systems with a small effort and is easy to
integrate in already existing C solutions, which consist of
separable software components.

REFERENCES

[1] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,
“Efficient software-based fault isolation,” SIGOPS Oper. Syst. Rev.,
vol. 27, no. 5, pp. 203–216, Dec. 1993. [Online]. Available:
http://doi.acm.org/10.1145/173668.168635

[2] D. Sehr, R. Muth, C. L. Biffle, V. Khimenko, E. Pasko,
B. Yee, K. Schimpf, and B. Chen, “Adapting software
fault isolation to contemporary cpu architectures,” in 19th
USENIX Security Symposium, 2010, pp. 1–11. [Online]. Available:
http://code.google.com/p/nativeclient/

[3] C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong
program analysis transformation,” in Code Generation and Optimization,
2004. CGO 2004. International Symposium on, March 2004, pp. 75–86.

[4] Andreas Ruhland, “Secure run-time binary loading in a trusted real-
time environment,” Master’s thesis, Technische Universität München,
Germany, January 2016.

[5] A. Tanenbaum, J. Herder, and H. Bos, “Can we make operating systems
reliable and secure?” Computer, vol. 39, no. 5, pp. 44–51, May 2006.

[6] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors,” SIGARCH
Comput. Archit. News, vol. 42, no. 3, pp. 361–372, Jun. 2014. [Online].
Available: http://doi.acm.org/10.1145/2678373.2665726

[7] B. Yee, D. Sehr, G. Dardyk, J. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar, “Native client: A sandbox for portable,
untrusted x86 native code,” in Security and Privacy, 2009 30th IEEE
Symposium on, May 2009, pp. 79–93.

[8] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time dynamic
linking for reprogramming wireless sensor networks,” in Proceedings
of the 4th International Conference on Embedded Networked Sensor
Systems, ser. SenSys ’06. New York, NY, USA: ACM, 2006, pp. 15–28.
[Online]. Available: http://doi.acm.org/10.1145/1182807.1182810

[9] ARM Architecture Reference Manual ARMv8, for ARMv8-A architecture
profile Beta, Arm ddi 0487a.g (id070815) ed., ARM Limited, 7 2015.

[10] ELF for the ARM ® Architecture, Arm ihi 0044e, current through abi
release 2.09 ed., ARM Limited, Nov. 2012.

[11] W. Dong, C. Chen, X. Liu, J. Bu, and Y. Liu, “Dynamic linking and
loading in networked embedded systems,” in Mobile Adhoc and Sensor
Systems, 2009. MASS ’09. IEEE 6th International Conference on, Oct
2009, pp. 554–562.

[12] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Bosschere,
“Diablo: a reliable, retargetable and extensible link-time rewriting frame-
work,” in ISSPIT, Dec 2005, pp. 7–12.

[13] L. Zhao, G. Li, B. De Sutter, and J. Regehr, “Armor: Fully
verified software fault isolation,” in Proceedings of the Ninth ACM
International Conference on Embedded Software, ser. EMSOFT ’11.
New York, NY, USA: ACM, 2011, pp. 289–298. [Online]. Available:
http://doi.acm.org/10.1145/2038642.2038687

[14] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in WWC-4. 2001 IEEE International Workshop, ser.
WWC ’01. Washington, DC, USA: IEEE Computer Society, 2001,
pp. 3–14. [Online]. Available: http://dx.doi.org/10.1109/WWC.2001.15

[15] ARM Ltd, “Cortex-a53 processor - specification,” January
2016, http://www.arm.com/products/processors/cortex-a/cortex-a53-
processor.php.

[16] C. Lattner, “Llvm and clang: Next generation compiler technology,” in
The BSD Conference, 2008, pp. 1–2.

[17] J. Johnston and T. Fitzsimmons, “The newlib homepage,” URL
http://sourceware. org/newlib, 2016.

[18] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “A secure
environment for untrusted helper applications confining the wily
hacker,” in USENIX Security Symposium Volume 6, ser. SSYM’96.
Berkeley, CA, USA: USENIX Association, 1996, pp. 1–1. [Online].
Available: http://dl.acm.org/citation.cfm?id=1267569.1267570

[19] P. Levis and D. Culler, “Maté: A tiny virtual machine
for sensor networks,” SIGARCH Comput. Archit. News,
vol. 30, no. 5, pp. 85–95, Oct. 2002. [Online]. Available:
http://doi.acm.org/10.1145/635506.605407

[20] G. Necula, “Proof-carrying code. design and implementation,” in Proof
and System-Reliability, ser. NATO Science Series, H. Schwichtenberg
and R. Steinbrüggen, Eds. Springer Netherlands, 2002, vol. 62,
pp. 261–288. [Online]. Available: http://dx.doi.org/10.1007/978-94-010-
0413-8 8

[21] M. J. C. Gordon and T. F. Melham, Eds., Introduction to HOL: A
Theorem Proving Environment for Higher Order Logic. New York,
NY, USA: Cambridge University Press, 1993.

[22] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity - principles, implementations, and applications.” Association
for Computing Machinery, Inc., November 2005. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=69217

[23] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula, “Xfi: Software guards for system address spaces,” in
Symposium on Operating System Design and Implementation
(OSDI), Seattle, WA, November 2006. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=64368

[24] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Donnelly,
P. Barham, and R. Black, “Fast byte-granularity software fault isolation,”
in ACM Symposium on Operating Systems Principles (SOSP). Associ-
ation for Computing Machinery, Inc., October 2009.

